Efficient Palm-Line Segmentation with U-Net Context Fusion Module

Toan Pham Van¹ Son Trung Nguyen¹ Linh Bao Doan¹ Ngoc N. Tran¹ Ta Minh Thanh²

¹R&D Department Sun-Asterisk Inc.

²Faculty of Computer Science Le Quy Don Technical University

The 14th The International Conference on Advanced COMPuting and Applications, November 2020

Toan et. al (Sun* AI)

Palm-line Segmentation

ACOMP 2020 1 / 18

Table of Contents

Introduction Motivation

- 2 Related Work
- 3 Proposed Method

Toan et. al (Sun* AI)

ACOMP 2020 2 / 18

< □ > < □ > < □ > < □ > < □ >

Table of Contents

IntroductionMotivation

2 Related Work

3 Proposed Method

Toan et. al (Sun* AI)

ACOMP 2020 3 / 18

<ロト <問ト < 目と < 目と

Motivation

Palmistry is one of the interesting problems in the computer vision field.

Motivation

Motivation

Palmistry is one of the interesting problems in the computer vision field.

Many cultures around the world believe that palm reading can be used to predict the future life of a person.

< □ > < @ >

Motivation

Motivation

Palmistry is one of the interesting problems in the computer vision field.

- Many cultures around the world believe that palm reading can be used to predict the future life of a person.
- Usability in biometric systems for verification, privacy security

< □ > < □ > < □ > < □ > < □ > < □ >

Table of Contents

2 Related Work

3 Proposed Method

Toan et. al (Sun* AI)

Palm-line Segmentation

ACOMP 2020 5 / 18

Related work

Palm-Line Detection [Laura Liu, et al - 2005]

Canny Edge Detection

Related work

- Palm-Line Detection [Laura Liu, et al 2005]
 - Canny Edge Detection
- Palmprint Recognition Using 3-D Information [David Zhang, et al - 2009]
 - 3D feature approached method

< □ > < 同 > < 回 > < 回 > < 回 >

Related work

- Palm-Line Detection [Laura Liu, et al 2005]
 - Canny Edge Detection
- Palmprint Recognition Using 3-D Information [David Zhang, et al - 2009]
 - 3D feature approached method
- Palm Print Biometric Recognition based on Scattering Wavelet Transform [Saranraj S, et al - 2016].
 - SWT feature

• • = • • = •

Lack of accuracy

Toan et. al (Sun* AI)

Palm-line Segmentation

ACOMP 2020 7 / 18

- Lack of accuracy
- Rely on hardware, sensor ability

< □ > < □ > < □ > < □ > < □ >

- Lack of accuracy
- Rely on hardware, sensor ability
- Image processing base method

イロト イヨト イヨト イヨト

Difficulty

Small segmentation region (line)

<ロト <問ト < 目と < 目と

Difficulty

- Small segmentation region (line)
- Long-range dependence

Table of Contents

IntroductionMotivation

2 Related Work

3 Proposed Method

Toan et. al (Sun* AI)

ACOMP 2020 9 / 18

<ロト <問ト < 目と < 目と

Workflow

Deep learning approaches

イロト イヨト イヨト イヨト

Dataset preparation

Image dataset for training

- We handcrafted our dataset from Google 11k Hands (in total)
- Remain diversity character of the original dataset

< ∃ > < ∃

Dataset preparation

Image dataset for training

- We handcrafted our dataset from Google 11k Hands (in total)
- Remain diversity character of the original dataset

Image Preprocessing

- The techniques we used including horizontal-Flip, shift scale rotate, random brightness contrast, and CLAH
- Negative image show the best results

Proposed Model

Context Fusion Module

Attention mechanisms

- focus on important regions of local feature
- reduce attention on irrelevant global features

Context Fusion Module

Toan et. al (Sun* AI)

ACOMP 2020 14 / 18

三日 のへの

Comparision

Table: Quantitative comparison between U-Net, FPN and U-Net-CF

Method	Backbone	Params	F1 Score	mloU
Unet	ResNet-34	24,456,299	98.89%	0.539
	ResNeXt-50	32,063,339	99.01%	0.535
FPN	ResNet-34	25,696,459	95.62%	0.356
	ResNeXt-50	28,179,403	96.01%	0.391
Unet-CF		10,270,115	99.42%	0.584

Toan et. al (Sun* AI)

■ ◆ ■ ▶ = = つへへ ACOMP 2020 15/18

イロト イボト イヨト イヨト

Post Processing - Gaussian Filter (Optional)

 Gaussian Filter are usually used to generate blur image. Our main purpose of using this filter is to reduce image noise or any excessive detail

Figure: Results with (right) and without Gaussian blur (left)

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Conclusion

 We employ deep learning methods to address the palm line segmentation problem

Conclusion

- We employ deep learning methods to address the palm line segmentation problem
- For future work, further investigations can be done using other functionalities of the CFM module

Toan et. al (Sun* AI)

Thank you for listening!

Toan et. al (Sun* AI)

Palm-line Segmentation

ACOMP 2020 18 / 18